CTBP2

Protein-coding gene in the species Homo sapiens
CTBP2
Available structures
PDBOrtholog search: PDBe RCSB
List of PDB id codes

2OME, 4LCJ

Identifiers
AliasesCTBP2, C-terminal binding protein 2
External IDsOMIM: 602619; MGI: 1201686; HomoloGene: 75187; GeneCards: CTBP2; OMA:CTBP2 - orthologs
Gene location (Human)
Chromosome 10 (human)
Chr.Chromosome 10 (human)[1]
Chromosome 10 (human)
Genomic location for CTBP2
Genomic location for CTBP2
Band10q26.13Start124,984,317 bp[1]
End125,161,170 bp[1]
Gene location (Mouse)
Chromosome 7 (mouse)
Chr.Chromosome 7 (mouse)[2]
Chromosome 7 (mouse)
Genomic location for CTBP2
Genomic location for CTBP2
Band7 F3|7 76.32 cMStart132,987,563 bp[2]
End133,124,354 bp[2]
RNA expression pattern
Bgee
HumanMouse (ortholog)
Top expressed in
  • pancreatic ductal cell

  • buccal mucosa cell

  • mucosa of paranasal sinus

  • pylorus

  • cardia

  • retinal pigment epithelium

  • renal medulla

  • dorsal motor nucleus of vagus nerve

  • nasal epithelium

  • caput epididymis
Top expressed in
  • saccule

  • otic placode

  • otic vesicle

  • migratory enteric neural crest cell

  • abdominal wall

  • retina

  • epiblast

  • Gonadal ridge

  • neural layer of retina

  • vas deferens
More reference expression data
BioGPS
n/a
Gene ontology
Molecular function
  • oxidoreductase activity, acting on the CH-OH group of donors, NAD or NADP as acceptor
  • NAD binding
  • protein binding
  • oxidoreductase activity
  • hydroxypyruvate reductase activity
  • protein kinase binding
  • glyoxylate reductase (NADP+) activity
  • protein homodimerization activity
  • protein-containing complex binding
  • transcription corepressor activity
  • chromatin binding
  • transcription coactivator activity
  • retinoic acid receptor binding
  • structural constituent of presynaptic active zone
Cellular component
  • synapse
  • cell junction
  • nucleus
  • cytosol
  • transcription repressor complex
  • ribbon synapse
  • presynaptic active zone cytoplasmic component
  • glutamatergic synapse
  • GABA-ergic synapse
  • presynaptic cytosol
  • photoreceptor ribbon synapse
Biological process
  • cell differentiation
  • regulation of transcription, DNA-templated
  • viral genome replication
  • transcription, DNA-templated
  • metabolism
  • viral process
  • negative regulation of cell population proliferation
  • negative regulation of transcription, DNA-templated
  • positive regulation of transcription by RNA polymerase II
  • positive regulation of retinoic acid receptor signaling pathway
  • white fat cell differentiation
  • positive regulation of chromatin binding
  • cellular response to leukemia inhibitory factor
  • synaptic vesicle docking
  • maintenance of presynaptic active zone structure
Sources:Amigo / QuickGO
Orthologs
SpeciesHumanMouse
Entrez

1488

13017

Ensembl

ENSG00000175029

ENSMUSG00000030970

UniProt

P56545

P56546

RefSeq (mRNA)
NM_001083914
NM_001290214
NM_001290215
NM_001329
NM_022802

NM_001321012
NM_001321013
NM_001321014
NM_001363508

NM_001170744
NM_009980
NM_001347623

RefSeq (protein)
NP_001077383
NP_001277143
NP_001277144
NP_001307941
NP_001307942

NP_001307943
NP_001320
NP_073713
NP_001350437

NP_001164215
NP_001334552
NP_034110

Location (UCSC)Chr 10: 124.98 – 125.16 MbChr 7: 132.99 – 133.12 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

C-terminal-binding protein 2 also known as CtBP2 is a protein that in humans is encoded by the CTBP2 gene.[5][6][7]

Function

The CtBPs - CtBP1 and CtBP2 in mammals - are among the best characterized transcriptional corepressors.[8] They typically turn their target genes off. They do this by binding to sequence-specific DNA-binding proteins that carry a short motif of the general form Proline-Isoleucine-Aspartate-Leucine-Serine (the PIDLS motif). They then recruit histone modifying enzymes, histone deacetylases, histone methylases and histone demethylases. These enzymes are thought to work together to remove activating and add repressive histone marks. For example, histone deacetylase 1 (HDAC1) and HDAC2 can remove the activating mark histone 3 acetyl lysine 9 (H3K9Ac), then the histone methylase G9a can add methyl groups, while the histone demethylase lysine specific demethylase 1 (LSD1) can remove the activating mark H3K4me.[9]

The CtBPs bind to many different DNA-binding proteins and also bind to co-repressors that are themselves bound to DNA-binding proteins, such as Friend of GATA (Fog).[10] CtBPs can also dimerize and multimerize to bridge larger transcriptional complexes. They appear to be primarily scaffold proteins that allow the assembly of gene repression complexes.

One interesting aspect of CtBPs is their ability to bind to NADH and to a lesser extent NAD+. It has been proposed that this will enable them to sense the metabolic status of the cell and to regulate genes in response to changes in the NADH/NAD+ ratio. Accordingly, CtBPs have been found to be important in fat biology, binding to key proteins such as PRDM16, NRIP, and FOG2.[11]

The full functional roles of CtBP proteins in mammals have been difficult to evaluate because of partial redundancy between CtBP1 and CtBP2.[12] Similarly, the early lethality of the CtBP2 knockout and of double knockout mice has precluded detailed analysis of the cellular effects of deleting these proteins. Important results have emerged from model organisms where there is only a single CtBP gene. In Drosophila CtBP is involved in development and in circadian rhythms.[13] In the worm C. elegans CtBP is involved in life span.[14] Both circadian rhythms and life span appear to be linked to metabolism supporting the role for CtBPs in metabolic sensing.

The mammalian CtBP2 gene produces alternative transcripts encoding two distinct proteins. In addition to the transcriptional repressor (corepressor) discussed above, there is a longer isoform that is a major component of specialized synapses known as synaptic ribbons. Both proteins contain a NAD+ binding domain similar to NAD+-dependent 2-hydroxyacid dehydrogenases. A portion of the 3'-untranslated region was used to map this gene to chromosome 21q21.3; however, it was noted that similar loci elsewhere in the genome are likely. Blast analysis shows that this gene is present on chromosome 10.[7]

Alternative Promoter Usage

In the vertebrate retina, the CtBP2 gene is transcribed from alternative promoters during retinal development yielding the CTBP2 transcriptional coregulator as well as the larger ribbon synapse scaffolding protein RIBEYE. [15] The multi use functionality of the CtBP2 locus appears to be conserved between avian and primate retinae with production of the RIBEYE mRNA being developmentally delayed by an epigenetic silencing mechanism. [16] In the developing human retina, transcription of the RIBEYE mRNA isoform is epigenetically regulated by DNA methylation. DNA sequences comprising the proximal RIBEYE promoter are enriched for DNA methylation and delay transcription of this isoform, possibly by inhibiting binding of the Cone-rod homeobox (CRX) transcription factor. [16] Global transcript analysis of human pluripotent stem cell (hPSC)-derived 3D retinal organoids demonstrates early and persistent expression of the CTPB2 isoform followed by delayed RIBEYE expression in the developing human eye. [17]

Interactions

CTBP2 has been shown to interact with:

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000175029 – Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000030970 – Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ a b Turner J, Crossley M (September 1998). "Cloning and characterization of mCtBP2, a co-repressor that associates with basic Krüppel-like factor and other mammalian transcriptional regulators". EMBO J. 17 (17): 5129–40. doi:10.1093/emboj/17.17.5129. PMC 1170841. PMID 9724649.
  6. ^ Chinnadurai G (February 2002). "CtBP, an unconventional transcriptional corepressor in development and oncogenesis". Mol. Cell. 9 (2): 213–24. doi:10.1016/S1097-2765(02)00443-4. PMID 11864595.
  7. ^ a b "Entrez Gene: CTBP2 C-terminal binding protein 2".
  8. ^ Turner J, Crossley M (August 2001). "The CtBP family: enigmatic and enzymatic transcriptional co-repressors". BioEssays. 23 (8): 683–90. doi:10.1002/bies.1097. PMID 11494316. S2CID 22273095.
  9. ^ Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA, Casero RA, Shi Y (December 2004). "Histone demethylation mediated by the nuclear amine oxidase homolog LSD1". Cell. 119 (7): 941–53. doi:10.1016/j.cell.2004.12.012. PMID 15620353. S2CID 10847230.
  10. ^ Fox AH, Liew C, Holmes M, Kowalski K, Mackay J, Crossley M (May 1999). "Transcriptional cofactors of the FOG family interact with GATA proteins by means of multiple zinc fingers". EMBO J. 18 (10): 2812–22. doi:10.1093/emboj/18.10.2812. PMC 1171362. PMID 10329627.
  11. ^ Jack BH, Pearson RC, Crossley M (May 2011). "C-terminal binding protein: A metabolic sensor implicated in regulating adipogenesis". Int. J. Biochem. Cell Biol. 43 (5): 693–6. doi:10.1016/j.biocel.2011.01.017. PMID 21281737.
  12. ^ Hildebrand JD, Soriano P (August 2002). "Overlapping and unique roles for C-terminal binding protein 1 (CtBP1) and CtBP2 during mouse development". Mol. Cell. Biol. 22 (15): 5296–307. doi:10.1128/mcb.22.15.5296-5307.2002. PMC 133942. PMID 12101226.
  13. ^ Itoh TQ, Matsumoto A, Tanimura T (2013). "C-terminal binding protein (CtBP) activates the expression of E-box clock genes with CLOCK/CYCLE in Drosophila". PLOS ONE. 8 (4): e63113. Bibcode:2013PLoSO...863113I. doi:10.1371/journal.pone.0063113. PMC 3640014. PMID 23646183.
  14. ^ Chen S, Whetstine JR, Ghosh S, Hanover JA, Gali RR, Grosu P, Shi Y (February 2009). "The conserved NAD(H)-dependent corepressor CTBP-1 regulates Caenorhabditis elegans life span". Proc. Natl. Acad. Sci. U.S.A. 106 (5): 1496–501. Bibcode:2009PNAS..106.1496C. doi:10.1073/pnas.0802674106. PMC 2635826. PMID 19164523.
  15. ^ Schmitz F, Konigstorfer A, and Sudhof TC (2000). "RIBEYE, a component of synaptic ribbons: a protein's journey through evolution provides insight into synaptic ribbon function". Neuron. 28 (3): 857–872. doi:10.1016/s0896-6273(00)00159-8. PMID 11163272.
  16. ^ a b Gage E, Agarwal D, Chenault C, Washington-Brown K, Szvetecz S, Jahan N, Wang Z, Jones M, Zack, Enke RA, Wahlin KJ (January 2022). "Temporal and isoform-specific expression of CTBP2 is evolutionarily conserved between the developing chick and human retina". Front. Mol. Neurosci. 14: 773356. doi:10.3389/fnmol.2021.773356. PMC 8793361. PMID 35095414.
  17. ^ Agarwal D, Kuhns R, Dimitriou C, Barlow E, Wahlin KJ, Enke RA (December 2022). "Bulk RNA sequencing analysis of developing human induced pluripotent stem cell-derived retinal organoids". Sci. Data. 9 (1): 759. doi:10.1038/s41597-022-01853-x. PMC 9734101. PMID 36494376.
  18. ^ a b Turner J, Nicholas H, Bishop D, Matthews JM, Crossley M (2003). "The LIM protein FHL3 binds basic Krüppel-like factor/Krüppel-like factor 3 and its co-repressor C-terminal-binding protein 2". J. Biol. Chem. 278 (15): 12786–95. doi:10.1074/jbc.M300587200. PMID 12556451.
  19. ^ van Vliet J, Turner J, Crossley M (2000). "Human Krüppel-like factor 8: a CACCC-box binding protein that associates with CtBP and represses transcription". Nucleic Acids Res. 28 (9): 1955–62. doi:10.1093/nar/28.9.1955. PMC 103308. PMID 10756197.
  20. ^ Mirnezami AH, Campbell SJ, Darley M, Primrose JN, Johnson PW, Blaydes JP (2003). "Hdm2 recruits a hypoxia-sensitive corepressor to negatively regulate p53-dependent transcription" (PDF). Curr. Biol. 13 (14): 1234–9. Bibcode:2003CBio...13.1234M. doi:10.1016/S0960-9822(03)00454-8. PMID 12867035. S2CID 2451241.
  21. ^ Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S, Albala JS, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski RS, Vandenhaute J, Zoghbi HY, Smolyar A, Bosak S, Sequerra R, Doucette-Stamm L, Cusick ME, Hill DE, Roth FP, Vidal M (2005). "Towards a proteome-scale map of the human protein-protein interaction network". Nature. 437 (7062): 1173–8. Bibcode:2005Natur.437.1173R. doi:10.1038/nature04209. PMID 16189514. S2CID 4427026.
  22. ^ Castet A, Boulahtouf A, Versini G, Bonnet S, Augereau P, Vignon F, Khochbin S, Jalaguier S, Cavaillès V (2004). "Multiple domains of the Receptor-Interacting Protein 140 contribute to transcription inhibition". Nucleic Acids Res. 32 (6): 1957–66. doi:10.1093/nar/gkh524. PMC 390375. PMID 15060175.
  23. ^ Murakami A, Ishida S, Thurlow J, Revest JM, Dickson C (2001). "SOX6 binds CtBP2 to repress transcription from the Fgf-3 promoter". Nucleic Acids Res. 29 (16): 3347–55. doi:10.1093/nar/29.16.3347. PMC 55854. PMID 11504872.
  24. ^ Holmes M, Turner J, Fox A, Chisholm O, Crossley M, Chong B (1999). "hFOG-2, a novel zinc finger protein, binds the co-repressor mCtBP2 and modulates GATA-mediated activation". J. Biol. Chem. 274 (33): 23491–8. doi:10.1074/jbc.274.33.23491. PMID 10438528.

Further reading

  • Schaeper U, Boyd JM, Verma S, Uhlmann E, Subramanian T, Chinnadurai G (November 1995). "Molecular cloning and characterization of a cellular phosphoprotein that interacts with a conserved C-terminal domain of adenovirus E1A involved in negative modulation of oncogenic transformation". Proc. Natl. Acad. Sci. U.S.A. 92 (23): 10467–71. Bibcode:1995PNAS...9210467S. doi:10.1073/pnas.92.23.10467. PMC 40632. PMID 7479821.
  • Sewalt RG, Gunster MJ, van der Vlag J, Satijn DP, Otte AP (January 1999). "C-Terminal binding protein is a transcriptional repressor that interacts with a specific class of vertebrate Polycomb proteins". Mol. Cell. Biol. 19 (1): 777–87. doi:10.1128/MCB.19.1.777. PMC 83934. PMID 9858600.
  • Furusawa T, Moribe H, Kondoh H, Higashi Y (December 1999). "Identification of CtBP1 and CtBP2 as corepressors of zinc finger-homeodomain factor deltaEF1". Mol. Cell. Biol. 19 (12): 8581–90. doi:10.1128/mcb.19.12.8581. PMC 84984. PMID 10567582.
  • Yu X, Baer R (June 2000). "Nuclear localization and cell cycle-specific expression of CtIP, a protein that associates with the BRCA1 tumor suppressor". J. Biol. Chem. 275 (24): 18541–9. doi:10.1074/jbc.M909494199. PMID 10764811.
  • Schmitz F, Königstorfer A, Südhof TC (December 2000). "RIBEYE, a component of synaptic ribbons: a protein's journey through evolution provides insight into synaptic ribbon function". Neuron. 28 (3): 857–72. doi:10.1016/S0896-6273(00)00159-8. PMID 11163272. S2CID 15695695.
  • Valenta T, Lukas J, Korinek V (May 2003). "HMG box transcription factor TCF-4's interaction with CtBP1 controls the expression of the Wnt target Axin2/Conductin in human embryonic kidney cells". Nucleic Acids Res. 31 (9): 2369–80. doi:10.1093/nar/gkg346. PMC 154232. PMID 12711682.
  • Brandenberger R, Wei H, Zhang S, Lei S, Murage J, Fisk GJ, Li Y, Xu C, Fang R, Guegler K, Rao MS, Mandalam R, Lebkowski J, Stanton LW (June 2004). "Transcriptome characterization elucidates signaling networks that control human ES cell growth and differentiation". Nat. Biotechnol. 22 (6): 707–16. doi:10.1038/nbt971. PMID 15146197. S2CID 27764390.
  • Alpatov R, Munguba GC, Caton P, Joo JH, Shi Y, Shi Y, Hunt ME, Sugrue SP (December 2004). "Nuclear speckle-associated protein Pnn/DRS binds to the transcriptional corepressor CtBP and relieves CtBP-mediated repression of the E-cadherin gene". Mol. Cell. Biol. 24 (23): 10223–35. doi:10.1128/MCB.24.23.10223-10235.2004. PMC 529029. PMID 15542832.

External links

  • v
  • t
  • e
  • 2ome: Crystal structure of human CTBP2 dehydrogenase complexed with NAD(H)
    2ome: Crystal structure of human CTBP2 dehydrogenase complexed with NAD(H)
  • v
  • t
  • e
Coactivators
Corepressors
ATP-dependent remodeling factors
  • Chromatin Structure Remodeling (RSC) Complex
  • SWI/SNF