Negation introduction

Logical rule of inference
Negation introduction
TypeRule of inference
FieldPropositional calculus
StatementIf a given antecedent implies both the consequent and its complement, then the antecedent is a contradiction.
Symbolic statement ( P Q ) ( P ¬ Q ) ¬ P {\displaystyle (P\rightarrow Q)\land (P\rightarrow \neg Q)\rightarrow \neg P}
Transformation rules
Propositional calculus
Rules of inference
  • Implication introduction / elimination (modus ponens)
  • Biconditional introduction / elimination
  • Conjunction introduction / elimination
  • Disjunction introduction / elimination
  • Disjunctive / hypothetical syllogism
  • Constructive / destructive dilemma
  • Absorption / modus tollens / modus ponendo tollens
  • Negation introduction
Rules of replacement
  • Associativity
  • Commutativity
  • Distributivity
  • Double negation
  • De Morgan's laws
  • Transposition
  • Material implication
  • Exportation
  • Tautology
Predicate logic
Rules of inference
  • Universal generalization / instantiation
  • Existential generalization / instantiation

Negation introduction is a rule of inference, or transformation rule, in the field of propositional calculus.

Negation introduction states that if a given antecedent implies both the consequent and its complement, then the antecedent is a contradiction.[1][2]

Formal notation

This can be written as: ( P Q ) ( P ¬ Q ) ¬ P {\displaystyle (P\rightarrow Q)\land (P\rightarrow \neg Q)\rightarrow \neg P}

An example of its use would be an attempt to prove two contradictory statements from a single fact. For example, if a person were to state "Whenever I hear the phone ringing I am happy" and then state "Whenever I hear the phone ringing I am not happy", one can infer that the person never hears the phone ringing.

Many proofs by contradiction use negation introduction as reasoning scheme: to prove ¬P, assume for contradiction P, then derive from it two contradictory inferences Q and ¬Q. Since the latter contradiction renders P impossible, ¬P must hold.

Proof

Step Proposition Derivation
1 ( P Q ) ( P ¬ Q ) {\displaystyle (P\to Q)\land (P\to \neg Q)} Given
2 ( ¬ P Q ) ( ¬ P ¬ Q ) {\displaystyle (\neg P\lor Q)\land (\neg P\lor \neg Q)} Material implication
3 ¬ P ( Q ¬ Q ) {\displaystyle \neg P\lor (Q\land \neg Q)} Distributivity
4 ¬ P F {\displaystyle \neg P\lor F} Law of noncontradiction
5 ¬ P {\displaystyle \neg P} Disjunctive syllogism (3,4)

See also

  • Reductio ad absurdum

References

  1. ^ Wansing, Heinrich, ed. (1996). Negation: A Notion in Focus. Berlin: Walter de Gruyter. ISBN 3110147696.
  2. ^ Haegeman, Lilliane (30 Mar 1995). The Syntax of Negation. Cambridge: Cambridge University Press. p. 70. ISBN 0521464927.